

Mapping of the largest structures in the Universe

Renée C. Kraan-Korteweg University of Cape Town

- From the smallest to the largest structures
- Large Superclusters versus standard cosmology
- > What about the 'nearby' Vela SCL
 - > Overview
 - Comparisons with reconstructions (CF2 & CF3)
 - Future Plans: MeerKAT & Taipan

Feast Fest: Trends in Astronomy SAAO, 31 July 2017

The uncovered structures got larger and larger

→ And now we are all living the Laniakea Supercluster (diameter ~ 160 Mpc; ~ 10^{17} M_☉ Tully+ 2014)

The uncovered structures got larger and larger

→ And now we are all living the Laniakea Supercluster (diameter ~ 160 Mpc; ~ 10^{17} M_☉ Tully+ 2014)

Superclusters

- The largest (up to ~ 100 Mpc) coherent structures in the Universe
 - \rightarrow Universe homogenous on scales of ~100Mpc
- SCL's have large masses: from a few times 10^{15} a few $10^{16} M_{\odot}$ (e.g. Shapley)
- Full superclusters are not bound still in formation in today (e.g. Einasto+ 2016)
 - \rightarrow complex morphology, can be multi-branching of filaments and walls
 - \rightarrow high density cores are mostly still collapsing; or will in future evolution
- High-density cores are older & dynamically more evolved than outskirts

However, quite a few extreme superclusters have been discovered recently

- \rightarrow larger than expected (> ~ 200 Mpc)
- \rightarrow at higher redshift (z~0.3-0.4), partly with collapsed cores
- \rightarrow too many in local Volume

Against common wisdom of SCL's – and possibly Λ CDM

Shapley Supercluster Wall (SSC)

-Announced as a dense cloud of galaxies by Shapley 1932

-Fully mapped (APM), while hunting for GA overdensity *Raychaudhury 1989*

Centrally condensed, full of high mass clusters Raychaudhury+1991, Proust+2006

Controversy about its contribution to bulk flow since early 90's

 V_{LG} : 50 - 150 km/s

Raychaudhury+ 1991, Munoz & Loeb 2011, versus Kocevski & Ebeling 2005

Sloan Great Wall (SGW)

Complex of 5 superclusters at ~ $200 - 260 h^{-1}$ Mpc (surveyed volume 120 - 360 Mpc)

- contains about 6000 massive galaxies
- two large SLC's, massive and elongated (about diameter ~ 100 and 50 Mpc each)
- but have multiple collapsed cores (3 and 2 each)

The 2 main clusters each have a mass between $1.2 - 6 \ge 10^{15} M_{\odot}$ Estimated mass of whole complex: $2.5 \ge 10^{16} M_{\odot}$

→ Shapley and Sloan: 2 major SCL's in nearby Universe - A conundrum for ACDM? apparently not. According to *Sheth & Diaferio 2011* for the case of SSC

"as long as no other similar objects are within 200*h*⁻¹ Mpc centred around Galaxy"

BOSS Great Wall (BGW)

Supercluster at $z \sim 0.47$ (~ 1200 h^{-1} Mpc)

Complex of 4 superclusters:

2 massive walls (A & B) of

- A: 186 h^{-1} Mpc; 6 x 10¹⁶ h^{-1} M_{\odot}
- B: $173 h^{-1}$ Mpc; $4 \ge 10^{16} h^{-1}$ M_{\odot}

plus 2 smaller walls (B & C)

→ total: 270 h^{-1} Mpc; 2 x 10¹⁷ h^{-1} M_☉

- Morphology similar to Sloan GW

- but larger

- Previously only smaller SCL at high z
- Very rare in simulations

(e.g. Horizon Run 2; Parker 2012)

- Is it the most massive SCL in the Universe (known so far)?
- Does its extent & mass fit current structure formation models?
- Does it comply with standard ACDM?

Saraswati Great Wall

Identified in SDSS, examined with LBS (LEGACY-BOSS-SOUTHERN)

- at z ~ 0.3 (distance ~ 800 Mpc) Also elongated (diameter ~270Mpc) containing 43 massive clusters
- → total: 270 h^{-1} Mpc; 3 x 10¹⁶ M_☉
- → Density contrast comparable to Shapley (1.62)
- Saraswati not yet fully collapsed
- but is SCL (according to Chon+15)
- → ,,How can Sarasawti have formed already (4b yrs ago)?
- → DE had just started to dominate structure formation:"

At z~0.37: $\Omega_{\Lambda} \cong \Omega_{m}$ \rightarrow did major growth of LSS start much earlier?

6dFGSv results: pec velocities from FP (N=9000)

- Bulk-flow within 160 Mpc/h: V = 365 km/s \rightarrow (I,b) = 313°, 15°
- -_> Residual flow of:

V = 292 km/s → (I,b) = 313°, 36°

→ Hints of structure influencing local dynamics outside of survey volume

Springob et al (soon on arXiv); Figure from Magoulas, Cosmic Flow meeting, 2013, Marseille

Sparsely sampled along Galactic Equator: Over ZOA region of $(l,b) = 245^\circ - 285^\circ$; $\pm 10^\circ (4^\circ-10^\circ)$

4756 redshifts from $\overline{AAOmega + SALT + 6dF + Optopus + 1.9m SAAO}$ & Literature ~ 95% unpublished data Where $A_B > 2-3mag \rightarrow hard$ to get redshifts, even for 2MASX galaxies

Vela Supercluster (VSCL) in ZOA: |b| < 10° Kraan-Korteweg+ 2017, MNL

4756 redshifts from AAOmega + SALT + 6dF + Optopus + 1.9m SAAO & Literature ~ 95% unpublished data

Below GP: $-10^{\circ} < b < 0^{\circ}$

Comparison of Redshift histograms of Vela versus Shapley: ~ 4000 in 20° x 20°; sparsely sampled ~ 8600 in 12° x 30°; fully sampled

- Massive overdensity traced over $(\Delta l, \Delta b) > 25^{\circ} \ge 20^{\circ}$
- Redshift histogram similar to Shapley SSC (Proust et al 2006, N ~ 8600);
- Vela SCL is $f \sim 1.2$ more distant \rightarrow more extended on the sky:

 Vela
 SSC

 ~ 25° x 20°
 19° x 16°

 115 x 90Mpc
 70 x 60 Mpc

What have we found – what does it signify?

Clear evidence for a galaxy supercluster in Vela:

- \rightarrow possibly a supercluster in formation
 - not many X-ray clusters (but overdense in X-ray clusters)
 - clusters are young, have many star forming galaxies
 - two merging wall of extent of $80 \times 65 h^{-1} Mpc$

Despite sparse sampling

- \rightarrow Vela SCL is significantly overdense
 - in 2M galaxy counts and
 - in volume defined by the overdensity

What have we found – what does it signify?

2M galaxy counts:

Vela survey area limited to 6° < b < 10°; 260° < l < 285°

99% complete for $A_K < 0.3mag$ and $K < 13.8 \rightarrow K^0 \sim 13.5mag$

3 comparison samples: ZOA: 110° < 1 < 260° SGC: b < -60° Full: 2MASX for |b| > 15°

 \rightarrow Enhancement in counts f = 1.2

Volume overdensity in shells:

Based on photometric redshifts (2MPZ; Bilicki et al 2014)

Caution: large errors in phot-z \rightarrow dilution of overdensity

Overdensity in shells 0.055 < z < 0.065

 \rightarrow Overdensity $\delta_{Vela} \sim 0.60$

What have we found – what does it signify?

Clear evidence for a galaxy supercluster in Vela The Vela SCL is significantly overdense

- in 2M galaxy counts
- in volume defined by the overdensity

→ $\delta_{SSC} \sim 1.4$; however if subjected to same completeness limit and biases this would be reduced by $f \sim 2.3$

→ making overdensity similar to Shapley

 \rightarrow Simple linear perturbation theory \rightarrow V_{LG} ~ 50 km/s

Independent evidence for Vela SCL?

- \rightarrow Comparison to reconstructions based on
 - CF2 (CLUES)
 - CF3 (watershed ···)

CLUES: Constrained Local UniversE Simulations (e.g. Sorce et al 2016, MN)

Use CLUES method to predict hidden ZOA structures

Sorce, Colless, Kraan-Korteweg, Gottloeber 2017 MN (arXiv:1707:04267)

Data set: Cosmic Flows 2 (CF-2) (*Tully et al 2013*) → 8315 pec vel out to ~30000km/s

200 constrained realisations

- interpreting the sums not average
- various test about robustness of recovery of structures

 \rightarrow remarkable agreement for known nearer ZOA structures (GA,PuP)

→ good agreement with 2MRS 2006 reconstructions (Erdogdu+ 2016)

→ both Walls of Vela SCL recovered (18000 & 21000 km/s) in the Constrained Realisation

Using the Watershed Analysis on CF3

in collaboration with Hoffman, Courtois et al

Stepping back

Results from Lanikea paper *Tully+ 2014*

Based on CF2

Although very sparse data at higher redshifts, → strong flow lines downwards from Shapley, → then bending to left

Using the Watershed Analysis on CF3 → The Vela Antlia Basin

Preliminary Results Based on CF3

CF3: N= 18000 v_{pec}

Mostly: - Spitzer TF: 2257 - 6dF: 8885

Some further - TRGB - SNIa

Hoffman, Courtois, Kraan-Korteweg, Pomarède, in prep

What have we found – what does it signify?

Clear evidence for a galaxy supercluster in Vela The Vela SCL is significantly overdense

- in 2M galaxy counts
- in volume defined by the overdensity

→ $\delta_{SSC} \sim 1.4$; however if subjected to same completeness limit and biases this would be reduced by $f \sim 2.3$

- \rightarrow making overdensity similar to Shapley
- → Simple linear perturbation theory → $V_{LG} \sim 50$ km/s
- \rightarrow Independent evidence from reconstructions
- Conundrum persists: 2 SCL's in close proximity

How much remains hidden behind ZOA? Does the Milky Way hide further surprises?

Steps towards a full census of the Vela SCL

... to determine its extent, richness and mass overdensity \rightarrow and contribution to bulk flow

- Early Science Survey with MeerKAT (M32 and/or M64) to cover optically obscured part of Vela SCL (|b| < 6°)
 - > First simulation show that this is feasible (240 hrs with M32, 60hrs M64)
 - With M64: extend survey, and include 2nd hidden part of Big Circle towards TriAu clusters
- Taipan survey in science verification mode (end of 2017)
- Follow-up VSCL cluster observations (IRSF, WISE, SALT)
 - (K-band LF, mass possibly peculiar velocities using WISE TF over the MeerKAT HI survey area)
- Further/SALT observations of new potential clusters and deeper surveyed IRSF cluster
- Full-sky HI mapping (SKA Pathfinders)
- > Optical spectroscpy (e.g. ne CSSOS

MeerKAT M32 Early Science survey scenario

Survey of fully opaque part of Vela SCL ZOA crossing

➢ With some overlap of high density Vela cluster regions on either side of GP

Taipan observations

 \rightarrow in Science Verification; starting end of 2017

<u>Taipan survey</u>

- multi-object spectroscopic galaxy
- will cover the whole southern sky
- spectra for over 1 million galaxies in the local Universe (z<0.3) over 4 years.

TAIPAN instrument:

- on 1.2m UK Schmidt Telescope (Siding Springs)
- innovative starbugs optical fibre positioner
- \rightarrow 150 objects per 6-deg field

 \rightarrow reasonabl complete redshifts, as faint as r =17.5 mag in 15 min integration

ZOA (|b| < 10°) not part of the Taipan survey **But selected for** the Taipan Science Verification

Taipan Vela Survey

Minimal Survey Area over Vela area with intermediate extinction

